immich搭建日记
新鲜感还没过总要找点好玩的,immich算是比较知名的了。
开始
搭建方式是使用docker-compose.yml
官方自带如下,总共分了4个部分,server、learn、redis、postgres
#
# WARNING: To install Immich, follow our guide: https://docs.immich.app/install/docker-compose
#
# Make sure to use the docker-compose.yml of the current release:
#
# https://github.com/immich-app/immich/releases/latest/download/docker-compose.yml
#
# The compose file on main may not be compatible with the latest release.
name: immich
services:
immich-server:
container_name: immich_server
image: ghcr.xiaoji.de/immich-app/immich-server:${IMMICH_VERSION:-release}
# extends:
# file: hwaccel.transcoding.yml
# service: cpu # set to one of [nvenc, quicksync, rkmpp, vaapi, vaapi-wsl] for accelerated transcoding
volumes:
# Do not edit the next line. If you want to change the media storage location on your system, edit the value of UPLOAD_LOCATION in the .env file
- /home/yuxh/Media/Image:/data
- ${UPLOAD_LOCATION}:/extlib
- /etc/localtime:/etc/localtime:ro
env_file:
- .env
ports:
- '2283:2283'
depends_on:
- redis
- database
restart: always
healthcheck:
disable: false
immich-machine-learning:
container_name: immich_machine_learning
# For hardware acceleration, add one of -[armnn, cuda, rocm, openvino, rknn] to the image tag.
# Example tag: ${IMMICH_VERSION:-release}-cuda
image: ghcr.xiaoji.de/immich-app/immich-machine-learning:${IMMICH_VERSION:-release}
# extends: # uncomment this section for hardware acceleration - see https://docs.immich.app/features/ml-hardware-acceleration
# file: hwaccel.ml.yml
# service: cpu # set to one of [armnn, cuda, rocm, openvino, openvino-wsl, rknn] for accelerated inference - use the `-wsl` version for WSL2 where applicable
volumes:
- model-cache:/cache
env_file:
- .env
restart: always
healthcheck:
disable: false
redis:
container_name: immich_redis
image: docker.io/valkey/valkey:8-bookworm@sha256:fea8b3e67b15729d4bb70589eb03367bab9ad1ee89c876f54327fc7c6e618571
healthcheck:
test: redis-cli ping || exit 1
restart: always
database:
container_name: immich_postgres
image: ghcr.xiaoji.de/immich-app/postgres:14-vectorchord0.4.3-pgvectors0.2.0@sha256:bcf63357191b76a916ae5eb93464d65c07511da41e3bf7a8416db519b40b1c23
environment:
POSTGRES_PASSWORD: ${DB_PASSWORD}
POSTGRES_USER: ${DB_USERNAME}
POSTGRES_DB: ${DB_DATABASE_NAME}
POSTGRES_INITDB_ARGS: '--data-checksums'
# Uncomment the DB_STORAGE_TYPE: 'HDD' var if your database isn't stored on SSDs
# DB_STORAGE_TYPE: 'HDD'
volumes:
# Do not edit the next line. If you want to change the database storage location on your system, edit the value of DB_DATA_LOCATION in the .env file
- ${DB_DATA_LOCATION}:/var/lib/postgresql/data
shm_size: 128mb
restart: always
volumes:
model-cache:
其中你要选择,要不要跑机器学习,如果不要,可以去掉immich-machine-learning, 因为多数都是在nas这种弱性能设备来安装,所以跑起来很难。
然后就各显神通了,比如我用了/home/yuxh/Media/Image:/data来映射我本地图片上去。
机器学习
可以选择用PC来机器学习,大概思路就是,现在windows有wsl可以装linux,然后再装docker,去单独跑那个immich-machine-learning镜像,开放外部访问给immich。
但是我看了下,有点麻烦,我选择直接安装Docker Desktop,基本一条龙就达成了。
docker-compose.yml如下:
name: immich_remote_ml
services:
immich-machine-learning:
container_name: immich_machine_learning
# 如果需要硬件加速,可以在镜像标签中添加 -[armnn, cuda, openvino]
# 例如:${IMMICH_VERSION:-release}-cuda
image: ghcr.io/immich-app/immich-machine-learning:${IMMICH_VERSION:-release}
# extends:
# file: hwaccel.ml.yml
# service: # 设置为 [armnn, cuda, openvino, openvino-wsl] 之一以启用加速推理
volumes:
- ./model-cache:/cache
environment:
- http_proxy=192.168.5.5:7890
- https_proxy=192.168.5.5:7890
restart: always
ports:
- 3003:3003
volumes:
model-cache:
下载模型
git clone https://huggingface.co/immich-app/buffalo_l
git clone https://huggingface.co/immich-app/XLM-Roberta-Large-Vit-B-16Plus
buffalo_l是人脸识别,XLM-Roberta-Large-Vit-B-16Plus是中文检索。
yaml里,我们映射了model-cache目录,所以目录结构大概如下: